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A new computational method--Monte Carlo j7ux method (MCFFis presented, which 
allows calculating electron distribution functions in weakly ionized gases of stationary 
molecules subjected to electric and magnetic fields. This method should be equally suited for 
calculating electron distribution functions in semiconductors. The method utilizes a modified 
Monte Carlo code to calculate transition probabilities for electrons between phase cells. 
Transport equations utilizing these transition probabilities are used to calculate steady state 
and transient distribution functions. Electron generation and depletion processes are easily 
incorporated. Numerical calculations of space independent electron distribution functions in 
nitrogen (N2) are presented for both steady state and transient conditions, and compared with 
results obtained with conventional Monte Car/o (CMC) calculations. The major advantages of 
the new method are discussed. ?) 1990 Academic Press, Inc. 

I. INTRODUCTION 

One of the persistent problems of crucial importance in collisional plasmas is 
obtaining knowledge of the space time dependent velocity distribution function, 
f(r, v, t), for the changed particles. At this time there are no means available to 
measure space and time dependent electron velocity distribution functions directly. 
Therefore, they have to be evaluated from measurable quantities such as rates and 
transport coefficients. To do this we depend on models which allow calculating dis- 
trubution functions and relating the distribution functions to such experimentally 
available data. 

Calculations of the electron distribution functions in collisional plasmas are 
based on numerical solutions of the Boltzmann equation utilizing a set of 
experimentally obtained cross sections which should be as complete as possible. 
The most common approaches are Boltzmann analysis and Monte Carlo technique. 
In the first approach the distr,ibution functions are expanded, usually into a series 
of Legendre polynomials. In this way the Boltzmann partial differential equation is 
converted into a set of coupled ordinary differential equations and each angular 
moment of the distribution function can be determined under certain approxima- 
tions. For practical reasons one has to limit the number of terms and often only 
two terms are considered. For highly anisotropic distributions (high values of E/N, 
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where E is the electric field intensity and iV is the gas density) or in cases where the 
wings of the distribution (usually the part of the distribution which has the higher 
anisotropy-see Section IV) are of major interest one has to increase the number 
of terms. It was shown by Allis [l] that under some conditions the calculated dis- 
tribution function can become negative and that in a certain energy range the 
magnitude of a higher order angular moment can be greater than a lower one; in 
other words, convergence of Boltzmann analysis is not guaranteed. 

In the conventional Monte Carlo (CMC) technique the electron trajectories are 
calculated and collisions of electrons with molecules in the gas are simulated by 
Poisson stochastic processes, and the states of electrons are sampled at certain time 
intervals. The statistical information can be obtained after evaluating a sufficiently 
large number of electrons or, for steady state calculations, after following one or a 
few electrons for a long enough period of time. Since the number of electrons sam- 
pled in a phase cell is the product of the function value at this phase cell, the 
volume of the phase cell, and the number of electrons studied, high resolution and 
small CPU time are contradictory to each other. This problem is especially serious 
in the wings of the distribution functions where the function value is inherently 
small. 

In order to increase the resolution in cases where the electrons in the wings of the 
distribution do not strongly interact with the rest of the electrons, methods have 
been used to renormalize the distribution function with changing weight factors 
during the calculation [24] or to recalculate the wing in a separate calculation 
[S]. In many other cases, however, these approaches are not feasible. 

Similar problems can occur in CMC calculations of electron distributions in 
semiconductors. Weighting procedures have been used to extend hot electron dis- 
tributions to rarely occupied ranges [6]. Also in multivalley semiconductors at low 
electric fields only a small fraction of electrons populate the upper valley. To obtain 
an accurate presentation of electrons in this valley it is necessary to increase the 
number of electrons used in a CMC simulation [7]. 

As an alternative we proposed the Monte Carloflux (MCF) method [S-lo]. To 
increase the resolution of the calculation also in the wings of the distribution func- 
tion, we have to be able to adjust the number of test particles, going into and out 
of a phase cell of any desired range of the phase space, independently of the final 
value of the distribution function at this phase cell. Quantities which can be 
calculated based on this condition are transition probabilities (or particle flux) for 
transitions between different phase cells. The final distribution function can be 
calculated from these transition probabilities. 

In Section I we addressed the problems associated with both the Boltzmann 
analysis and the Monte Carlo technique and explained the main idea of the MCF 
method. The physical basis and mathematical formulation of the MCF method will 
be presented in Section II for cases in which electron generation and depletion pro- 
cesses can be neglected. In Section III we will discuss how to incorporate generation 
and depletion mechanisms. Section IV presents numerical results obtained using the 
MCF method and, for comparison, results obtained using the CMC technique. 
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II. THE MATHEMATICAL FORMALISM OF 
THE MONTE CARLO FLUX METHOD 

In this section we describe the MCF method for conditions under which electron 
generation and depletion processes can be neglected and no density gradients occur. 
Since the CMC technique is well known, we will emphasize the features of the MCF 
method and mention some similarities between the two methods. 

The statistical behaviors of electrons in gases subjected to an electric field can be 
described by the distribution function, f(r, v, t), in the phase space (r, v). In the 
homogeneous case we only need to consider the velocity distribution, f(v, t). If the 
direction of the electric field does not change, this problem has axial symmetry with 
respect to the direction of the electric field (negative z-direction) and the velocity 
distribution reduces to f(u, p, t) with ,D = u,/u. In this case the v-space is only two- 
dimensional, however; the MCF method can also be used for calculating three- 
dimensional velocity distribution functions such as in E x B fields. 

The knowledge of f(v, t) can be obtained by either solving the Boltzmann equa- 
tion or performing a CMC simulation. As mentioned in Section I both methods 
have some limitations. We will not further discuss the convergence problem of 
Boltzmann analysis, which has been discussed in detail by Allis [ 11. On the other 
hand, the discussion of some of the problems related to the CMC is helpful in 
understanding the MCF method. 

A. The Conventional Monte Carlo Technique 

For the CMC technique the phase space is first discretized. The way of discretiza- 
tion and the size of the phase cells depend on the specific problem. In our example 
(E = constant in negative z-direction), the phase is only two-dimensional, (v, p). 
The motions of electrons in the phase space are calculated by following their trajec- 
tories and simulating their collisions with background molecules via random 
variables. At the same time the states of electrons are sampled and stored. After a 
predetermined number of samples the statistical information of the electrons in 
gases under the influence of the external electric field is obtained. The CMC techni- 
que is a bookkeeping procedure, which is not difficult to implement. 

As mentioned before, the CMC technique has severe disadvantages such as the 
significant amount of computer time needed and the low resolution in the wings of 
the distribution function. We know that the statistical error of the simulation is 
inversely proportional to the number of samplings. The number of electrons sam- 
pled in a phase cell is determined by the value of the distribution function at the 
cell, the volume of the cell, and the total number of electrons studied. Let us, for 
example, assume that we have discretized the velocity range of interest into IO2 
intervals and that we have sampled lo6 electron states. In the high velocity wings 
of the distributions the function values are very small, and the ratio to the maxi- 
mum value can be in the order of lop4 and lower. This corresponds to only one 
or a few electrons sampled per velocity interval of the wing. In order to reduce the 
statistical error in this velocity range we have to increase either the total number 
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of counts which means to increase the CPU time or the size of the phase cells which 
means to decrease the velocity resolution of the simulation. 

The problems associated with the CMC technique come from the fact that the 
number of electrons sampled in a phase cell is directly proportional to the value of 
the distribution function. In order to reduce the statistical error in the wings of the 
distributions we have to be able to increase the number of test electrons appearing 
in the high energy range in such a way that we get approximately the same resolu- 
tion over the full distribution. With this requirement in mind, we will develop math- 
ematical formulation of the MCF method. 

B. The Monte Carlo Flux Method 

For the MCF method the phase space is again first discretized. Just as in the 
CMC technique this requires some prior knowledge of the extension of the relevant 
phase space for a given boundary condition. In this method we treat each phase cell 
as a state which electrons can occupy with a certain probability. The state of 
electrons is then described by specifying the relative probability of finding electrons 
in any such state. Instead of using the relative probability we can also use the 
density of electrons in phase space to describe the state of electrons. The only 
difference between these quantities is the normalization constant, which is the 
electron density in the real space, np. Depending on the specific situations we will 
use both terminologies in the later text. 

The statistical ensemble motion of the electrons in the phase space is then 
described by the transition probabilities (or particle flux) of electrons for transitions 
between different phase cells within a time step, t,. The definition of the transition 
probability, pJt,), for a given field configuration is the probability for an electron 
to appear in the phase cell j at the time t, under the condition that it was in phase 
cell i at the time t = 0. 

In the Monte Carlo flux method we use a modified Monte Carlo code to 
calculate these transition probabilities. It should be mentioned here that any other 
method used to solve the Boltzmann equation can also be utilized to calculate these 
transition probabilities. For example, equivalent transition probability rates in 
energy space have been calculated based on the two-term expansion [ 111. By using 
a modified Monte Carlo simulation code, as discussed below, we can calculate these 
transition probabilities for a given value of E/N as 

Pii = Ng(ts)lNi(O), (1) 

where N,(t,) is the number of electrons observed in the phase cell j after the 
sampling time, t,, and N,(O) is the number of electrons introduced into the phase 
cell i at t = 0. The number of electrons introduced into phase cell i at t = 0, Nj(0), 
which determines the resolution of the calculation, can be adjusted independently 
of the function value of the distribution at the phase cell i. For a balanced 
resolution over the full distribution one would typically select N,(O) to be constant 
(independent of i). 
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Since at this time no electron generation and depletion processes are considered, 
the total number of electrons introduced into phase cell i at time t = 0 can be 
expressed as : 

WO)=C N,,(t.,). (2) 

Taking the summation of Eq. (1) over subscript ,j and using Eq. (2) we obtain 

c P;,(t,) = 1 (3) 

which is the equation for the conservation of the number of electrons. Equation (3) 
is not exact since Eq. (1) contains a statistical error, which can be reduced by 
increasing N,(O) and decreasing the size of the phase cell; however, conservation of 
particles is numerically guaranteed in the MCF method. The error in calculating 
the transition probabilities, am, will, of course, affect the accuracy of the 
distribution function. 

Let us denote the density of electrons in phase cell i by ni (i = 1, 2, . ..). Thus the 
two states of electrons at the time t = 0 and t = t, are specified by state vectors, n(0) 
and n(t,), respectively, whose elements are 

40) = {n,(O), h(O), . . . 1’ (4) 

n(t,) = {n,(t.,), dt,), ->‘. (5) 

The density of electrons appearing in phase cell j at the time t = t,, n,(t,,), is 
connected to the densities at t =0 and the transition probabilities through the 
transport equation: 

fl,(ts) = 1 PlJt.7) %(O) (j= 1, 2, . ..). (6) 

Equation (6) can be written in the matrix form 

n(t,s) = P’(t,) n(O); (7) 

here P(t,) is the transition matrix, defined as 

P(t,) = {P&)1 (8) 

and P’(t,5) is the transposed matrix of P(t,7). The function of the transition matrix, 
P(t,), is mapping the initial state vector, n(O), into n(t,) after a time step, t,y. 

For the transient case, we can simply update the distribution function by time 
steps with the length t, using the transport Eq. (7). Obviously, the time step, t,, is 
the resolution of this method with respect to time. 
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For the steady state case, as a special case of the transient one, where 
n(t,,) = n(0) = n, we have 

n = P’(t,,)n. (9) 

Equation (9) is an eigenvalue problem. From Eq. (3) we can prove that its eigen 
equation 

det{P’(t,Y)-I} =0 (10) 

always holds [ 121. This means that there exists at least one nontrivial solution n 
to Eq. (9). However, for our assumed physical system there is only one solution. 
Thus the distribution function for the steady state case is the normalized eigen- 
vector of the matrix, P’(t,), corresponding to the unit eigenvalue. 

For the case in which no electron generation and depletion mechanisms are 
involved, the electron density, n,, is not defined. Therefore, we can only determine 
the normalized distribution, n/n,. Generation and depletion mechanisms will be 
discussed in Section III. 

The mathematical model used in the MCF method is the Markov chain [12]. 
Equation (7) shows that the past has no influence on the future if the present is 
specified. This imposes specific conditions on the selection of the time step, t,,, 
which controls the transition probabilities (or flux) of electrons going from one 
phase cell to another. The introduction of N;(O) test electrons into phase cell i at 
t = 0 has to be done in some random fashion equally distributed over the volume 
of the phase cell. The condition for a Markov chain is fulfilled only if those 
electrons which have moved within the time, t,,, into phase cell j are again 
distributed in a random manner. In this respect the influences of collisions and of 
the applied electric field are quite different. The collisions are simulated by random 
variables (for the free flight time, type of collisions, and scattering angle) and will, 
in general, fulfill this condition. The acceleration of electrons between two 
successive collisions in the electric field, however, is deterministic. The minimum 
time step, (ts)mj,, is therefore defined by the condition that the velocity component 
in electric field direction, uZ, changes by an amount equivalent to the width of the 
phase cell in v-direction. 

The major difference between the MCF method and the CMC technique is that 
in calculating the transition probabilities the electrons are not followed over a long 
period of time, but only over the sampling time, t,s. One important feature of the 
MCF method is that the number of electrons introduced into any state can be 
chosen independent of the final value of the distribution function since the 
transition probabilities are conditional. Because of this property we can introduce 
as many electrons into any phase cell in the wings as those into the low energy 
range. This property of the MCF method implies that the resolution of the 
calculation of the full distribution function will be improved and that the CPU time 
needed will be reduced. 

For the steady state case we only had to calculate the eigenvector of the matrix 
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P’( t,,), which was obtained for a constant value of E/N, subject to the normalization 
condition. In the transient case, however, E/N changes with time and, as a 
consequence, the transition matrix in the transport Eq. (7) should also change with 
time. In a practical code one, therefore, has to provide a library of transition 
matrices for different values of E/N in the E/N range of interest, and time dependent 
calculations are approximated by a number of stepwise changes of E/N. E/N has to 
be kept constant for at least one time step, t,,. 

In the following we will, therefore, restrict ourselves to the simplest case in which 
E/N is constant and the initial distribution is different from the one of the steady 
state case for this value of E/N. This condition is, for example, given in the case 
where the external electrical field jumps from one value to another at the time f = 0. 
Under this assumption, the transition matrix is fixed for t > 0 and the state vector 
of the electrons after any number of time steps, kt,, can be evaluated according to 
the following equation: 

n(kt,) = (P’(t,))k n(O), k: integer. (11) 

In order to understand how the initial state vector relaxes to the final one, it is 
necessary to look at the spectrum of the transition matrix. Assuming that the 
eigenvalues and the corresponding eigenvectors of the matrix P’(t,,) are 1, and n, 
(i = 1, 2, . ..). respectively, we can expand the state vector at the time t = kt, 
(k: integer) as 

n(kt,) = 1 c,Afn, (12) 

where the expansion coefficients ci (i= 1, 2, . ..) depend on the initial state vector, 
n(O), and the eigenvectors n, (i= 1, 2, 3, . ..). 

We already know that the maximum eigenvalue of the transition matrix, 1,, is 
one because of Eq. (3) [ 121. The further study reveals that the expansion coefficient 
c, is one. Thus Eq. (12) can be written as 

n(kt,) = n, + 2 c,l:ni. (13) 

As the time approaches infinity, only the first term on the right of Eq. (13) is left. 
The others disappear since the magnitudes of their eigenvalues are less than one. 
Thus, the first eigenvector of the matrix P(r,), which was calculated for a constant 
value of E/N, is the steady state distribution at this value of E/N. 

The higher order modes play an important role only during the transition phase. 
Without these modes the distribution function would not be continuous at time 
t = 0. Since, at this moment, no electron generation and depletion processes are 
considered, the total number of electrons is conserved (see Eq. 3). Therefore the 
summation of the elements of any eigenvector is zero except for the one belonging 
to the unit eigenvalue. 
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III. INCORPORATION OF GENERATION AND DEPLETION OF ELECTRON 

In the last section we have developed the MCF method for the case where no 
electrons are gained and lost. In this section we will discuss how to incorporate 
electron generation and depletion mechanisms into the MCF method. In general, a 
particular process can be incorporated either into the modified Monte Carlo code 
which is used to calculate the transition probabilities or into the transport Eq.(7). 
The optimum choice depends on the specific process considered. 

1. Ionization 

One step ionization is easily incorporated into the modified Monte Carlo code, 
considering the ionization cross section just as the one for any other collision 
process. The primary and the secondary electrons are followed until the end of the 
sampling time, t,. Differential ionization cross section and the distribution of the 
partition of kinetic energy between primary and secondary electrons after ionizing 
collisions are available for some gases [13-151. It is noted that, after the sampling 
time, t,s, electrons will appear in more than one state. As a result, the total number 
of electrons at the time t,V resulting from electrons in phase cell i is the total number 
of electrons introduced into phase cell i at the time t = 0, N, (0), plus the number 
of electrons generated by ionization, Z;(t,). Now Eqs. (2) and (3) become 

c N,,(b) = N,(O) + zi(t,) (14) 

(15) 

Equation (15) reflects the fact that the electron number increases with time due to 
ionization. 

2. Electron Attachment 

Only dissociative attachment will be discussed here, since it is the result of two 
body collisions. We assume that the density of the attaching molecules, n,, is 
independent of the electron density. Attachment can be incorporated either into the 
modified Monte Carlo code or into the transport equation (7). 

In the modified Monte Carlo code, we treat attachment in a way similar to 
ionization. The only difference is that the electron is removed whenever attachment 
occurs. Now Eq. (2) becomes 

1 N;,(ts) = N;(O) - Ai( (16) 

where N;(O) is the number of electrons introduced into state i at the time t =O, 
N,(t,) is the number of transitions from phase cell i to j, and Ai is the number 
of attachment processes for electrons starting from state i within the sampling time, 
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t,,. Obviously, the summation of the transition probabilities of electrons leaving 
phase cell i will be less than unity, i.e., 

c Pi,k) < 1. (17) 

Attachment can also be considered in the transport equation. In this approach 
we separate the transition matrix into two matrices. The first one, Pr(t,), which is 
obtained by the modified Monte Carlo code, takes care of all processes in the gas 
except for attachment. The removed electrons due to the attachment will be 
included in the second matrix, P2(ts), as 

where 

(18) 

nr,: density of the attaching gas 

CJ,: attachment cross section 
vi: mean speed within phase cell i 

t,s: sampling time 

6, : kronecker delta function. 

The total transition matrix is then approximated as the product of these two 
matrices. To conserve the symmetry property we define the total transition matrix 
as: 

P(t.s) = 0.5 * wl(t,s) Pz(t.J + P2(ts) P1(t,)). (19) 

3. Recombination 

The simplest case is dissociative recombination, since it is a two body collision. 
Similar to the case of attachment, we use two matrices to take care of recom- 
bination and the rest. Now the second matrix is 

where 

n + : density of positive ion 
0,: ionization cross section 
vi: mean speed within phase cell i 

t,y: sampling time 
6, : kronecker delta function. 

The total transition matrix is the same as given by Eq. (19) and the transport 
equation (7) is still valid. It should be noted that the matrix PZ(t,,) depends on the 
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ion density, n + , which has to be calculated in a separate transport equation. For 
the special case of a recombination dominated discharge, we have 

n + =np=C nj (21) 

and P*(t,) is a function of the electron density, np. For the transient case the 
densities (n + , n,) and the matrix PZ(fs) have to be updated after each time step t,, 
from Eqs. (20) and (21). This can be done easily, since matrix P, is diagonal. 

4. External Source 

For external electron sources (Xray, UV radiation, particle beams, etc.) the 
electron generation rate does not depend on the electron density, n,. It is therefore 
appropriate to add a source term, n,, to the transport equation (7). Now the 
generalized transport equation is 

n(t,) = P’(t,) n(0) + n,. 

The source vector, n,V, is given by 

nsi = Sfin(ui) dvt,, 

(22) 

(23) 

where 

S: source function (number of electrons per unit volume 
and unit time) 

,fi,,(u): velocity distribution of the initial electrons 
produced by the external source 

6v: volume of the phase cell 

t,: sampling time. 

5. Ionization and Recombination 

In the above we have shown how to incorporate individual electron generation 
and depletion processes into the MCF method. In this subsection we will give an 
example in which ionization and recombination are considered at the same time. 

For all processes, except for recombination, we use the matrix Pi(t,) to represent 
them, as discussed in the subsection 111.1. Recombination is taken into account by 
the matrix P*(t,), whose elements are defined by Eq. (20). Then the total transition 
matrix can be approximated using Eq. (19). 

For the steady state case, the number of electrons gained through ionization 
must be equal to the number of electrons lost through recombination. This require- 
ment determines the electron density for the steady state, n,, which can be obtained 
by solving the eigen equation (10). We now can easily obtain the normalized 
distribution n/n, from Eq. (9). A steady state electron density, of course, only exists 
if electron generation and depletion processes are considered at the same time. 
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Since the matrix Pz(t,Y) is diagonal, the calculation involved in solving the eigen 
equation (10) is not difficult. On the other hand, it is quite difficult to include 
electron generation and depletion processes in a CMC code, especially if the 
electron density changes significantly over time [3]. Therefore, the MCF method 
gives us a suitable way to study the influence of the electron generation and 
depletion mechanism on the distribution function. 

IV. NUMERICAL RESULTS 

In this section we present numerical results obtained using the MCF method and, 
for comparison, results obtained using the CMC method. All calculations were 
performed for the homogeneous case in nitrogen (N2) at one atmosphere and room 
temperature (N= 2.5 x lOI cm 3, using the set of total and differential cross 
sections given by Phelps and Pitchford [ 161. For the steady state case we compare 
the energy distributions, the angular distributions and the first six normalized 
Legendre coefficients at different values of E/N. As an example for the transient case 
we examine the response of the distribution function to a step function of E/N. 
The MCF code was used to calculate the time-dependent development of the 
distribution function. Since such calculations are too time-consuming with a CMC 
code, we performed such calculations only with low resolution to evaluate the 
relaxation of mean energy and drift velocity. In the MCF code we also incorporated 
ionization and recombination to calculate the steady state and time dependent 
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Phase Cells in Velocity Space 

FIG. 1. Discretization of a two-dimensional velocity space. 
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electron density and to investigate the influence of the electron generation and 
depletion processes on the electron energy distribution. 

In the formulation of the MCF method given in Sections II and III, the dimen- 
sions of the state vectors and the ranks of transition matrices are infinite. For 
numerical calculations we have to truncate the velocity to get finite rank matrices 
and finite order vectors. The preliminary knowledge of the required velocity range 
can be obtained either from experience or from a low resolution CMC simulation. 
Once the boundary of the velocity space is decided, we can discretize the 
two-dimensional velocity space (0, ,U = v,/u) with a grid, as shown in Fig. 1. Each 
cell is a state which electrons occupy with certain probability. In our numerical 
calculations the velocity o was divided into 100 intervals and p into 10. Thus the 
number of states is 1000 and size of the transition matrix is 1000 x 1000. 

FIG 2. Two-dimensional distribution functions f(~, p) obtained using the MCF met 
E/N= 100 Td; (b) at E/N = 300 Td. 

hod: (a) at 
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FIGURE 2 (continued) 

For the calculations of the transition probabilities we introduced 1000 test 
electrons into each phase cell, uniformly distributed over the phase cell. This 
approach is a good approximation as long as the difference between the function 
value f, in phase cell i and the function value in one of its direct neighbors i (see 
Fig. 1) is small compared to the function value itself, i.e., 

I.f-AlMi~ 1. (24) 

This condition is, for a sufficiently large dimension of the state vector, always 
fulfilled except for the phase cells with the lowest velocity. We, therefore, also tried 
to inject electrons into the low velocity phase cells according to a Maxwellian 
distribution; however, the numerical results showed that this was not necessary. 

Electrons introduced into the phase cells with the highest values of the velocity 
can, within the time t,,, move beyond the boundary of the truncated part of the 
phase space. For the calculation of the transition probabilities we, therefore, 
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consider the phase cells with the highest velocity to be open in u-space, but only for 
the final state of the electron after the time t,. This approximation preserves 
conservation of particle number. 

As discussed in Section II the minimum sampling time, (t,y),,,, is the time it takes 
an electron to be accelerated over the full width of the phase cell in u=-direction. 
Larger sampling times give less statistical error of the steady state distrtibution but 
also less resolution of the time-dependence for the transient case. A transition 
matrix, P(t,\), which has been evaluated for short time steps, as required for 
calculating the relaxation of drift velocity or mean energy, can also be used to 
calculate transient conditions with long time constants such as the relaxation of the 
electron density. To save computer time one can reduce the number of time steps 
by a factor of k by using the transitive matrix: 

P,(mt.,) = (P(t.s))“. 

FIG. 3. Two-dimensional distribution function f(u,, t‘?) obtained using the MCF method al 
E/N=300 Td. 
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1. Steady State Electron Velocity Distribution Functions 

All the calculations were originally performed in the velocity space. For the 
graphical presentation we converted the velocity-dependence into the energy- 
dependence. Figure 2 shows the two-dimensional distributions f(s, p) at 
E/N = 100 Td and E/N = 300 Td. In order to present a physical view of the two- 
dimensional distribution, we also show the velocity distribution at E/N = 300 Td in 
cylindrical coordinates (Fig. 3). These figures provide a clear picture of the electron 
distributions in the phase space and reveal some features typical for discharges in 
nitrogen (N,) which will be discussed below. 

All macroscopic quantities and one-dimensional distributions can be extracted 
from the two-dimensional distributions shown above. Integrating the two- 
dimensional function, f(s, p), over p yields the energy distribution f(s). Figure 4 
shows the normalized electron energy distribution functions at E/N = 50 Td and 
E/N = 100 Td obtained using both the MCF and the CMC method. The absolute 
resolution of the CMC simulation is limited to approximately lop5 of its maximum 
value, corresponding to one count per velocity interval. This general limitation of 
the resolution in the wings of the distribution can only be improved by significantly 
increasing the computer time as discussed in Section 1I.A. The MCF method in 
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FIG. 5. Distributions of the anisotropy f(p) obtained with both the CMC and MCF method. 
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comparison allows the calculation of the distribution function down to much lower 
values. 

Through a similar procedure by integrating the two-dimensional function, 
f(u, p), over the velocity, u, we obtain the distribution of the anisotropy f(p). 
Figure 5 shows f(p) at E/N = 50 Td and E/N = 100 Td. The results obtained using 
both the CMC and the MCF methods agree very well. The influence of E/N on the 
anisotropy is shown in Fig. 6. These curves, obtained using the MCF method, 
demonstrate the drastic increase of the anisotropy with increasing E/N. 

It is obvious that, for specific values of E/N, the anisotropy of the distribution 
function is different in different energy ranges as can be seen, for example, from 
Fig. 2. For an easier interpretation of these results it may be advantageous to 
comprise the electrons into groups. For nitrogen (N,) the energy dependence of the 
cross sections suggests consideration of three electron groups. N, has a large cross 
section for vibrational excitation with a maximum at approximately 2 eV which 
causes a minimum in the energy distribution function at this energy (see Fig. 2b) 
The electron group from 0 to 2 eV is, therefore, dominated by elastic collisions and 
vibrational excitation. Once electrons have passed the region of the high cross 
section for vibrational excitation they may only encounter elastic collisions until 

0.65 7-- 

/ 300Td 
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0.75 1 
1OOTd 

0.70 -I k 
0.65 j 

I 
t 0.60 
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= 0.55 
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0.35 4 

0.30 1 
-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1. 

vz/v 

FIG. 6. Distributions of the anisotropy f(p) at different values of E/N obtained using the MCF 
method. 
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they reach an energy of approximately 8 eV, where the region of electronic 
excitation starts. This energy region is also characterized by a significantly 
decreased value of the distribution function. The electrons in the energy region from 
2 to 8 eV are, therefore, expected to be partially ballistic. Above 8 eV the 
distribution function is dominated by a large number of inelastic collision processes. 
Figure 7 shows the anisotropy for these three electron groups at E/N= 100 Td, 
demonstrating the existence of the highest anisotropy for the electron group from 
2 to 8 eV. 

2. Comparison of the First Six Legendre Coefficients 

Usually, it is difficult to compare two-dimensional functions directly. One way is 
to expand two-dimensional functions into a series of given polynomials. For a 
comparison of the two-dimensional distributions f(~, p), calculated with both the 
MCF method and the CMC method, we evaluated the first six Legendre coeffkients 
by using the Legendre transform. The results at E/N = 300 Td are shown in Fig. 8. 
The zeroth angular moment determines the mean value of energy and the first one 
determines the drift velocity. For these two moments the agreement between the 
MCF and the CMC method is very good. The agreement becomes worse for higher 
order moments. The first four normalized Legendre coefficients obtained using the 
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FIG. 7. Distributions of the anisotropy f(p) of different energy regions at E/N = 100 Td. 
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MCF method are plotted in Fig. 9 to demonstrate the importance of high order 
moments at this value of E/N. We assume that, especially for high energies, the data 
obtained with the MCF method are more reliable since the resolution of the CMC 
method is limited in the wings of the distribution. 

At this time we did not compare the Legendre coefficients calculated with the 
MCF method with those evaluated with a multiterm Boltzmann analysis. Such 
comparison is available for the CMC method [17]. 

3. Transient Electron Distribution Functions 

The equation used to calculate transient distribution functions is the transport 
equation (7). The same transition matrix used to calculate the steady state distribu- 
tion function can also be used to calculate the time dependent development of the 
distribution function at a given value of the reduced electric field E/N for any initial 
condition. Figures 10 and 11 show, as examples, the time dependence of the energy 
distribution, f(s, t), and anisotropy, f(p, t), after an E/N step from 100 to 300 Td. 

A similar calculation with a CMC code would be extremely time-consuming. 
We, therefore, performed CMC calculations with only 10’ electrons. Thus, the 
distribution function shows significant fluctuations. For comparison we used the 
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FIG. 9. The first four normalized Legendre coeffkients of the distribution function in N, at 
E/N = 300 Td obtained using the MCF method (in logarithmic scale). 
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FIG. 10. Relaxation of the electron energy distribution function with time after an E/N step from 100 
to 300Td in N,. 

time-dependence of the mean energy and the drift velocity, as shown in Figs. 12 and 
13 for E/N steps from 100 to 300 Td and vice versa. These curves show good 
agreement between the results obtained with the two different methods. The drift 
velocity calculated with the CMC method, however, shows strong fluctuations 
because of the limited number of electrons followed. 

Figure 12 shows the difference between the energy relaxation times for the step 
up (- 10 ps) and for the step down (-35 ps). Figure 13 shows the initial faster 
response of the drift velocity to the changes of E/N leading to an overshoot and, 
for the E/N step up, even to an oscillation of the drift velocity. The steady state 
values are reached at times similar to the relaxation times for the mean energy. 
However, at low values of E/N the time for the drift velocity to reach steady state 
is much smaller than the one for the mean energy. 

It should be mentioned that the scaling quantity for relaxation phenomena at 
constant values of E/N is the product of time, t, and density of background gas, N, 
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as long as the discharge characteristic is dominated by two body collisions with 
neutrals. The relaxation phenomena shown in Figs. 12 and 13 should, therefore, be 
accessible to experimental investigations in discharges at low pressure. 

4. Incorporation of Ionization and Recombination Processes 

To illustrate how easily the MCF method can deal with electron generation and 
depletion processes we calculated the distribution functions and electron densities 
for both steady state and transient cases with the ionization and recombination 
processes occurring at the same time. The recombination process considered here 
was dissociative recombination of electrons with Nz ions [ 181. After obtaining the 
two matrices P,(t,s) and Pz(t,,) (see Section IIIS), the steady state electron density 
was calculated by using Eq. (10). Then the distribution function was evaluated 
using Eq. (9). Figure 14 presents the distribution functions at E/N = 300 Td, for the 
two cases, with and without ionization and recombination. It can be seen that in 
the energy range from 0 to 6 eV the electron energy distribution function with 
ionization and recombination is higher than the one without these processes. Above 

a 

FIG. 11. Relaxation of the distribution function of the velocity in field direction, u;, with time after 
an E/N step from 100 to 300 Td in N,, looking at the: (a) positive V; direction; (b) negative u, direction. 
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FIGURE 11 (continued) 

6 eV it is the other way around. The major reasons are that a fast electron is needed 
for ionization and that the primary and secondary electrons, as a result of 
ionization, appear in the low energy range. 

For the transient case both the initial distribution and the electron density were 
updated by using the transport equation (7) in which the transition matrix, P(t,Y), 
is defined by Eq. (19). The relaxations of mean energy and drift velocity are quite 
similar to the ones shown in Figs. 12 and 13 for the case without ionization and 
recombination. The evolution of the electron density with time for E/N steps up 
and down are shown in Fig. 14. For the case of an E/N step up, from 100 to 
300 Td, the time constant for the electron density is much larger than the one for 
the mean energy or even the drift velocity. Within the first 0.4 ns, ionization 
dominates and the electron density increases exponentially. Then, at higher electron 
densities, recombination starts to play a role in the relaxation process and the 
growth rate of the charged particles is reduced. Steady state is reached in 
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FIG. 14. Electron energy distribution function ion N, with and without ionization and recombi- 
nation at E/N = 300 Td. 

approximately 1 ns. For the case of an E/N step down, the relaxation time for the 
electron density is much larger than the relaxation times of drift velocity and mean 
energy, since it is dominated by recombination at lower electron densities. It takes 
a long time for the electron density to reach steady state, as shown in Fig. 14. 

If we use the original transition matrix with the sampling time, t,, to update the 
electron density, a very large number of numerical iterations is required to reach 
steady state. This problem can be solved by using the transition matrix P,(mt,), 
defined in Eq. (25), describing time steps of mt,. 

5. Comparison of CPU Times for the Different Methods 

The code to calculate the transition matrix, P(t,), for a MCF calculation and the 
CMC code involve essentially the same computational steps. The CPU times for 
both calculations are, therefore, approximately the same as long as the total 
number of collisions is kept constant. The MCF code for a steady state calculation 
requires in addition the solution of the eigenvalue equation (9); however, the CPU 
time for this part is only a small fraction of the CPU time required to calculate the 
transition matrix ( < 5 %). 

As discussed in Section II, the CMC method has good resolution in the energy 
ranges where the distribution functions are large and poor resolution in the wings 
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FIG. 15. Relaxation of the electron density for an E/N step from 100 to 300 Td including ionization: 
(a) without recombination; (b) with recombination; (c) for an E/N step from 300 to 1OOTd including 
ionization and recombination (in logarithmic scale). 

of the distributions, while the MCF method has approximately the same resolution 
over the full investigated range of the phase space. To improve the resolution of the 
CMC simulation in the wings of distribution, for example, by a factor of 10, one 
also has to increase the CPU time by the same factor. 

The major difference in CPU time required for the two methods stems from two 
facts. First, the transition matrix, P(t,), can also be used to calculate the time 
dependent development of the distribution function for any initial condition. The 
CPU time required to solve the transport equation (7) for a sufficiently large 
number of time steps (Figs. 9 to 12) was also only a small fraction of the CPU time 
required to calculate the transition matrix (< 10 %). A similar calculation with a 
CMC code with similar resolution would require a CPU time at least 10’ times 
higher than for the MCF method. Second, the transition matrix, P(t,), is reusable 
for calculations with different initial conditions or different boundary conditions 
such as changes in the electron generation and depletion mechanisms. This means 
that the MCF method becomes even more efficient if a large number of calculations 
for different conditions are performed. 
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V. CONCLUSIONS 

The presented calculations demonstrate the general feasibility of the MCF 
method in calculating electron velocity distributions for both steady state and 
transient cases. Major advantages are: 

(1) Combination of Monte Carlo simulation and analytical methods 
(2) Increase of resolution in the wings of distribution functions in any 

coordinate of an anisotropic distribution compared with the CMC simulation 

(3) Efficiency in its application to transient distributions 

(4) Easy incorporation of electron generation and depletion processes 

(5) Decrease of CPU time. 

All these advantages stem from the fact that a CMC code is used to calculate 
conditional transition probabilities, rather than population probabilities. These 
transition probabilities are reusable and can be used to calculate steady state and 
transient distribution for any initial condition. 

One limitation of the MCF method is the need for a large computer memory. In 
our numerical calculations, the size of the transition matrix was 1000 x 1000 (100 
intervals for the velocity and 10 for ,LL). However, only 20 % of all matrix elements 
were nonzero. The Yale Sparse Package enabled us to reduce the requirements for 
computer memory to at least one half. The extension of this method to fully 
three-dimensional distributions is, therefore, possible. The applications of the MCF 
method in the cases of E x B fields and AC and microwave discharges with different 
states of polarization and axial magnetic fields will be presented in a separate paper. 
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